A New Parallel Search Algorithm for Non-Linear Function Optimization
نویسندگان
چکیده
Abstrac/-This paper proposes a new parallel search algorithm using evolutionary programming and quasi-simplex technique (EPQS). EPQS produces the offspring from three ways in parallel: 1) Using the Gaussian mutation, 2) Using the Cauchy mutation, and 3) Using the quasi-simplex techniques. The quasi-simplex technique uses the ideal of classical simplex technique and produces four prospective individuals by using the reflection, expansion and compression operations. EPQS selects the parents for the next generation from all the parents and offspring. EPQS takes the diversity of offerings into consideration by generating the offspring from as many as possible ways while it maintains a substantial convergence rate. Experimental studies on six typical benchmark functions have shown that the proposed algorithm is more effective than the competing algorithms.
منابع مشابه
New Formulation and Solution in PCB Assembly Systems with Parallel Batch processors
This paper considers the scheduling problem of parallel batch processing machines with non-identical job size and processing time. In this paper, a new mathematical model with ready time and batch size constraints is presented to formulate the problem mathematically, in which simultaneous reduction of the makespan and earliness-tardiness is the objective function. In recent years, the nature-in...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملOptimization of Mixed-Integer Non-Linear Electricity Generation Expansion Planning Problem Based on Newly Improved Gravitational Search Algorithm
Electricity demand is forecasted to double in 2035, and it is vital to address the economicsof electrical energy generation for planning purposes. This study aims to examine the applicability ofGravitational Search Algorithm (GSA) and the newly improved GSA (IGSA) for optimization of themixed-integer non-linear electricity generation expansion planning (GEP) problem. The performanceindex of GEP...
متن کاملModify the linear search formula in the BFGS method to achieve global convergence.
<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...
متن کاملOptimizing Cost Function in Imperialist Competitive Algorithm for Path Coverage Problem in Software Testing
Search-based optimization methods have been used for software engineering activities such as software testing. In the field of software testing, search-based test data generation refers to application of meta-heuristic optimization methods to generate test data that cover the code space of a program. Automatic test data generation that can cover all the paths of software is known as a major cha...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007